Mastrovito Multiplier for General Irreducible Polynomials

نویسندگان

  • Alper Halbutogullari
  • Çetin Kaya Koç
چکیده

We present a new formulation of the Mastrovito multiplication matrix for the field GF (2) generated by an arbitrary irreducible polynomial. We study in detail several specific types of irreducible polynomials, e.g., trinomials, all-one-polynomials, and equally-spaced-polynomials, and obtain the time and space complexity of these designs. Particular examples, illustrating the properties of the proposed architecture, are also given. The complexity results established in this paper match the best complexity results known to date. The most important new result is the space complexity of the Mastrovito multiplier for an equally-spaced-polynomial, which is found as (m − ∆) XOR gates and m AND gates, where ∆ is the spacing factor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic Design of Original and Modified Mastrovito Multipliers for General Irreducible Polynomials

ÐThis paper considers the design of bit-parallel dedicated finite field multipliers using standard basis. An explicit algorithm is proposed for efficient construction of Mastrovito product matrix, based on which we present a systematic design of Mastrovito multiplier applicable to GF …2m† generated by an arbitrary irreducible polynomial. This design effectively exploits the spatial correlation ...

متن کامل

Mastrovito Multiplier for All Trinomials

An efficient algorithm for the multiplication in GF (2) was introduced by Mastrovito. The space complexity of the Mastrovito multiplier for the irreducible trinomial x +x+1 was given as m − 1 XOR and m AND gates. In this paper, we describe an architecture based on a new formulation of the multiplication matrix, and show that the Mastrovito multiplier for the generating trinomial x + x + 1, wher...

متن کامل

Reverse engineering of irreducible polynomials in GF(2m) arithmetic

Current techniques for formally verifying circuits implemented in Galois field (GF ) arithmetic are limited to those with a known irreducible polynomial P (x). This paper presents a computer algebra based technique that extracts the irreducible polynomial P (x) used in the implementation of a multiplier in GF(2). The method is based on first extracting a unique polynomial in Galois field of eac...

متن کامل

Mastrovito form of Karatsuba Multiplier for All Trinomials

We present a Matrix-vector form of Karatsuba multiplication over GF (2m) generated by an irreducible trinomial. Based on shifted polynomial basis (SPB), two Mastrovito matrices for different Karatsuba multiplication parts are studied. Then related multiplier architecture is proposed. This design effectively exploits the overlapped entries of the Mastrovito matrices to reduce the space complexit...

متن کامل

Parallel Multiplication in F2n Using Condensed Matrix Representation

Abstract: In this paper we explore a matrix representation of binary fields F2n defined by an irreducible trinomial P = X + X + 1. We obtain a multiplier with time complexity of TA + (⌈log2(n)⌉)TX and space complexity of (2n − 1)n AND and (2n − 1)(n − 1) XOR . This multiplier reaches the lower bound on time complexity. Until now this was possible only for binary field defined by AOP (Silverman,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999